755 research outputs found

    Investigation of cardiovascular tissue following 56Fe-radiation and potential countermeasure effectiveness.

    Get PDF
    Exposure to ionizing radiation is an important medical concern because it can lead to health problems including cancer and cardiovascular issues. In space, astronauts are exposed to ionizing radiation that is not experienced by those who remain on Earth. This radiation can cause health problems such as cardiovascular disease. One way this can happen is through the creation of reactive oxygen species, which can activate TGF-β1, contributing to fibrosis or other cardiovascular problems. Antioxidants can be a potential pharmacological mitigator of these excess reactive oxygen species because of their ability to neutralize reactive oxygen species. One such antioxidant with potential as a mitigator for radiation induced cell and tissue damage is curcumin, but is quickly excreted by the body because it is a hydrophobic molecule with a short half-life. In order to retain therapeutically relevant curcumin levels in the body, curcumin needs to be delivered by a drug delivery vehicle. The work presented here examines mice irradiated with 56Fe radiation, to mimic space radiation. These mice were treated with a drug delivery vehicle containing curcumin or a saline sham prior to radiation. Two weeks after radiation, the mice were sacrificed and the hearts and aortas were studied. To examine the effects of radiation on the mouse cardiovascular system, the tissues were evaluated with an aortic outgrowth assay, ROS assay, Masson’s trichrome staining, hematoxylin and eosin staining, and wall thickness studies. Statistically, the only significant tissue changes from 56Fe radiation were noted in the thickening of the right ventricle and in the reduction of cardiac muscle per nuclei in the hematoxylin and eosin staining also in the right ventricle. The only significant results of the drug treatments were in the reduction of thinning of the left ventricle by the Alb/CCM and CCM treatments. There were trends of thinning of the left ventricle and thickening of the aortas as a results of the 56Fe radiation. There were drug treatment trends with Alb/CCM leading to the largest outgrowth of the aorta and all treatments leading to a reduced thickening of the right ventricle

    Investigation of flow fields within large scale hypersonic inlet models

    Get PDF
    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    Biomass burning and urban air pollution over the Central Mexican Plateau

    Get PDF
    Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow

    Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Get PDF
    Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σ<sub>sp</sub>) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σ<sub>sp</sub> at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors <i>f</i>(RH)=σ<sub>sp</sub>(RH)/σ<sub>sp</sub>(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the <i>f</i>(RH) is available so far. At this site, <i>f</i>(RH=85%) varied between 1.2 and 3.3. Measured <i>f</i>(RH) agreed well with <i>f</i>(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good <i>f</i>(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σ<sub>sp</sub>(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σ<sub>sp</sub>, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "ϰorg" parameter, and f44 was determined and is given by ϰorg = 2.2 × f44 − 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg=2.2×f44−0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Get PDF
    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20–30 μg sm<sup>−3</sup> ppm<sup>−1</sup> up to 60–70 μg sm<sup>−3</sup> ppm<sup>−1</sup> between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (<i>R</i><sup>2</sup>=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio

    The star identification, pointing and tracking system of UVSTAR, an attached payload instrument system for the Shuttle Hitchhiker-M platform

    Get PDF
    We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second
    corecore